Data Science/Data Scientist9 [펌] 10 things statistics taught us about big data analysis 10 things statistics taught us about big data analysisPosted on May 22, 2014 by Jeff LeekIn my previous post I pointed out a major problem with big data is that applied statistics have been left out. But many cool ideas in applied statistics are really relevant for big data analysis. So I thought I'd try to answer the second question in my previous post: "When thinking about the big data era, wh.. 2014. 9. 4. Recommending music on Spotify with deep learning This summer, I’m interning at Spotify in New York City, where I’m working on content-based music recommendation using convolutional neural networks. In this post, I’ll explain my approach and show some preliminary results.OverviewThis is going to be a long post, so here’s an overview of the different sections. If you want to skip ahead, just click the section title to go there.Collaborative filt.. 2014. 9. 4. 서비스와 데이터마이닝 과학자는 자신이 가진 솔루션을 적용할 문제를 찾고 엔지니어는 자신의 문제를 해결할 솔루션을 찾는다라는 말로 과학(자)과 엔지니어링을 구분한 글을 본 적이 있다. 적절한 구분인 것같다. 데이터 분석/마이닝도 같은 관점에서 구분할 수 있을까? 문제에 맞는 솔루션을 찾는 사람은 데이터 마이너고, 알고리즘에 맞는 문제를 찾는 사람은 데이터 사이언티스트라고 부를 수 있을까? 별로 좋은 구분인 것같지 않다.최근 빅데이터나 데이터 사이언스 등에 관심이 조금 쏠리고 데이터 기반의 무엇 (Data-driven X)이라는 표현을 자주 접하게 된다. 선무당이 사람잡는다는 말도 있지만, 데이터와 연결된 용어들이 범람하면서 데이터 선무당들도 많이 늘고 있는 것같다. 간혹 지난 몇 년동안 엄청나게 많은 데이터를 모아놓았는데 이걸.. 2014. 9. 4. 이전 1 2 다음