Fine tuning3 LLM Fine-Tuning 기법 정리(feat. PEFT LoRA중심) LoRA 기법 중심으로 정리한 LLM 미세 조정(Fine-tuning) 기법 대형 언어 모델(LLM)의 성능을 특정 작업에 맞게 최적화하려면 미세 조정(Fine-tuning)이 필요합니다. 그러나 기존의 전체 가중치를 조정하는 방식은 연산 비용이 크고, 메모리 사용량이 높아 현실적으로 적용이 어렵습니다. 이에 따라, 최근에는 더 효율적인 PEFT(Parameterized Efficient Fine-Tuning) 기법들이 등장했습니다. 이 블로그에서는 전통적인 미세 조정 방식의 한계를 짚어보고, LoRA, LoRA-FA, VeRA, Delta-LoRA, LoRA+ 등 최신 미세 조정 기법 5가지를 비교 분석합니다. 각각의 방법이 어떻게 작동하는지, 어떤 장점이 있는지, 그리고 실제 사용 사례를 통해 최적의.. 2025. 2. 25. 미세 조정과 전이 학습의 차이점은? 머신러닝 학습법 완벽 정리 머신러닝 기법 소개 대부분의 머신러닝(ML) 모델은 독립적으로 학습되지만, 여러 모델 간 상호작용을 활용하여 성능을 향상시키는 다양한 기법이 존재합니다. 이번 글에서는 전이 학습(Transfer Learning), 미세 조정(Fine-tuning), 다중 작업 학습(Multitask Learning), 연합 학습(Federated Learning) 네 가지 학습 방법을 설명합니다. 1. 전이 학습 (Transfer Learning)📌 정의전이 학습은 기존에 학습된 모델(예: 대규모 데이터셋에서 사전 학습된 모델)을 새로운 작업에 활용하는 학습 방법입니다.📌 특징✅ 기존 모델이 이미 학습한 패턴을 활용하여 새로운 작업에 적용✅ 새로운 모델을 처음부터 학습하는 것보다 더 적은 데이터와 짧은 훈련 시간으로.. 2025. 2. 25. AI 엔지니어가 꼭 읽어야 할 정보: Fine-Tuning편 AI 모델의 성능을 극대화하고 특정 도메인에 최적화하기 위해 파인튜닝(Fine-Tuning) 기술은 필수적입니다. 2025년에는 보다 효율적이고 비용 효과적인 파인튜닝 방법이 등장하고 있으며, AI 엔지니어들은 이러한 최신 기술을 숙지하고 실무에 적용해야 합니다. 본 글에서는 최신 파인튜닝 기법과 실무 적용 전략을 소개합니다.1. 주요 파인튜닝 기법 및 연구 동향1.1 LoRA 및 QLoRA: 저비용 파인튜닝의 표준LoRA 논문, QLoRA 논문비용 효율적으로 대형 언어 모델(LLM)을 파인튜닝하는 데 가장 널리 사용되는 방법.FSDP+QLoRA를 활용한 학습 사례도 참고.1.2 DPO: 선호도 파인튜닝 기법DPO 논문PPO(정책 최적화)의 대안으로 인기 있지만 성능 면에서는 다소 열등.OpenAI에서 .. 2025. 2. 22. 이전 1 다음